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Numerical modeling of turbulent compound channel flow using the
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SUMMARY

The flow of water in a straight compound channel with prismatic cross section is investigated with a
relatively new tool, the lattice Boltzmann method. The large eddy simulation model is added in the lattice
Boltzmann model for nonlinear shallow water equations (LABSWETM) so that the turbulence, caused
by lateral exchange of momentum in the shear layer between the main channel and floodplain, can be
taken into account and modeled efficiently. To validate the numerical model, a symmetrical compound
channel with trapezoidal main channel and flat floodplain is tested. Similar to most natural watercourses,
the floodplain has higher roughness values than the main channel. Different relative depths, Dr (the ratio
of the depth of flow on the floodplain to that in the main channel), are considered. The Reynolds number
is set at 30 000 in the main channel. The lateral distributions of the longitudinal velocity, the boundary
shear stress, the Reynolds stress and the apparent shear stress across the channel are obtained after the
large eddy simulation is performed. The results of numerical simulations are compared with the available
experiment data, which show that the LABSWETM is capable of modeling the features of flow turbulence
in compound channels and is sufficiently accurate for practical applications in engineering. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Compound channel flow is of considerable importance in both practice and theory. In natural rivers,
such flows happen during floods when the water level exceeds the bank elevation and occupies
the adjacent floodplain. Also certain man-made compound channels are deliberately constructed
to increase the conveyance capacity during flooding or to provide additional recreational space for
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Figure 1. Features of flows in two-stage compound channel [9].

sightseeing, etc. [1]. As many engineering projects aim at flood mitigation, the prediction of flow
characteristics in compound channels is of much concern. The traditional approach to compound
channel flow is conceptually to divide the flow into subsections and compute separately [2], without
considering the interaction between the main channel and the floodplain. In reality, an exchange
of momentum exists, as pointed out by Wright and Carstens [3], and by Zheleznyakov [3, 4].
A large number of experiments were carried out in the 1980s. Contributions from Hadjipanos
[5], Wormleaton et al. [6], Knight and Demetriou [7], Myers [8] and other researchers provided
abundant data leading to a better understanding of the fundamental behavior of compound channel
flow. Representative features of flows in a two-stage symmetric compound channel are sketched
in Figure 1. Subsequently, several analytical models have been developed by involving empirical
coefficients, assumptions or approximations [10–12]. With the development of computing power,
numerical simulation has become one of the main means to investigate fluid problems and is now
popular in both academia and industry. For example, Rameshwaran and Naden [13] and Morvan
et al. [14] simulated compound channel flows using conventional three-dimensional models.
However, these three-dimensional models require huge computational capacity, whereas one-
dimensional models are clearly not sufficient for this purpose. Thus, two-dimensional models based
on depth-averaged parameters are suitable, especially for the lateral distribution of velocity and
shear stress. An alternative tool, the lattice Boltzmann model for nonlinear shallow water equations
(LABSWETM), has been developed and improved theoretically over the past decade [15]. Since
the flow characteristics in a compound channel is strongly dependent on local source terms, and
the lattice Boltzmann method (LBM), based on micro-dynamics, is able to model macroscopic
phenomena without loss of detailed features, the two-dimensional LABSWETM [15] is considered
here to investigate compound channel flows. The aim of this paper is to examine the capacity of
the lattice Boltzmann model to predict compound channel flow.
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In straight channel flow, turbulence is generated by boundary shear, the velocity gradient, and
the secondary flow of Prandtl’s second type. The standard subgrid-scale stress model is here
incorporated into the LBM for nonlinear shallow water equations (LABSWETM) so that turbulence
can be taken into account and modeled efficiently, especially so as to treat the turbulence caused
by lateral exchange of momentum in the shear layer between the main channel and floodplain. On
account of symmetry of the selected straight compound channel, only half the channel model is
set up. This has been verified by the data from Science and Engineering Research Council Flood
Channel Facility (SERC-FCF) [9] at the University of Birmingham and by the experience from
other investigations [11, 16]. In the present study, the Reynolds number of the flow is selected as
30 000 in the main channel, with reference to the SERC-FCF experimental conditions. The lateral
distribution of the longitudinal velocity, the boundary shear stress, the Reynolds stress and the
apparent shear stress across the channel are obtained from the numerical simulations and are then
compared with the available experimental data.

2. LABSWETM

2.1. Governing equations

Water depth in shallow water flow is usually much smaller than horizontal scale so that flow is
characterized by horizontal motion. The assumption of hydrostatic pressure is often used to replace
the momentum equation in the vertical direction in the mathematical model; therefore, the vertical
acceleration is ignored. On the other hand, most flows in nature are turbulent. In theory, turbulence
can be simulated using the Navier–Stokes equations and the continuity equation, but at enormous
computational overhead. Generally, there are two alternative ways to model turbulence: introducing
the Reynolds equations and turbulent stress as in the k−� model or using space-filtered governing
equations and large eddy simulation with subgrid-scale stress model for the unresolved scale stress.
Previous research indicates that the latter approach produces more accurate solutions and gives
very detailed turbulent features [17]; hence it is used in this paper. The general two-dimensional
governing equations for shallow water flows can be derived from the Navier–Stokes equations.
After taking depth-averaged and space-filtered calculations, the nonlinear shallow water equations
can be expressed in a tensor form as [18]

�h
�t

+ �(hu j )

�x j
=0 (1)

�(hui )

�t
+ �(huiu j )

�x j
=−g

2

�h2

�xi
+(�+�e)

�2(hui )
�x j�x j

+Fi (2)

where the Cartesian coordinate system is used; h is water depth; x j and u j are the distance and
instantaneous space-filtered velocity components in the j direction, respectively, i.e. for j =1,
x j = x and u j =u; for j =2, x j = y and u j =v. x and y are defined as longitudinal and lateral
directions of the channel; and u j is defined by

u j (x, y, z, t)=
∫ ∫ ∫

�x�y�z
ubj G(x, y, z, x ′, y′, z′)dx ′dy′dz′ (3)
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with a spatial filter function G and ubj is the velocity component before being space-filtered; x ′, y′

and z′ are the coordinates of the space chosen for velocity filter; g=9.81m/s2 is the gravitational
acceleration; t is the time; � is the kinematic viscosity; �e is the eddy viscosity, defined by

�e=(Csls)
2
√
Si j Si j (4)

where Cs is the Smagorinsky constant, ls=�x and Si j is the magnitude of the large-scale strain-rate
tensor:

Si j = 1

2h

[
�(hui )

�x j
+ �(hu j )

�xi

]
(5)

The depth-averaged subgrid-scale stress �i j with eddy viscosity is calculated by

�i j =−�e

[
�(hui )

�x j
+ �(hu j )

�xi

]
(6)

In addition, Fi is the force term and is defined as

Fi =−gh
�zb
�xi

+ �wi −�bi
�

(7)

where zb is the bed elevation above the datum. The bed shear stress �bi in the i direction is given
by the depth-averaged velocities:

�bi =�Cbui
√
u ju j (8)

in which Cb is the bed friction coefficient estimated from Cb=g/C2
z . Cz is the Chezy coefficient

either given by the Manning equation, Cz =h1/6/nb, where nb is the Manning coefficient, or the
Colebrook–White equation [19]:

Cz =−√32g lg

(
Ks

14.8h
+ 1.255�Cz

4h
√
2gu ju j

)
(9)

where Ks is the Nikuradse equivalent sand roughness. The wind shear stress �wi =�aCwuwi√
uw j uw j where �a is the density of air, Cw is the resistance coefficient and uwi is the component

of the wind velocity in the i direction.

2.2. Lattice Boltzmann model

The LBM is a discrete computational method based on lattice gas cellular automata. A lattice
Boltzmann model has three main components: the kinetic equation; a lattice pattern and the
equilibrium distributions. The lattice Boltzmann model for nonlinear shallow water equations
(LABSWE) has been presented by Zhou [15]. After incorporating the subgrid-scale model, for
motion in the i direction the lattice Boltzmann equation with 9-speed square lattice and force term
is given as follows:

f�(x+e��t, t+�t)= f�(x, t)− 1

�t
[ f�(x, t)− f eq� (x, t)]+ �t

6e2
e�i Fi (10)

where f� is the particle distribution function; e=�x/�t ; �x is the lattice size; �t is the time step;
�t=�+�e is the total relaxation time, wherein � is the single relaxation time and �e is the eddy
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relaxation time with respect to the eddy viscosity. Since �e can be calculated by

�e=
−�+

√
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2
(11)

the total relaxation time, �t, is further expressed as
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where ∏
i j

=∑
�
e�i e� j ( f�− f eq� ) (13)

e�i is the i directional component of velocity vector of a particle in the � link. For the 9-speed
square lattice shown in Figure 2(a), each particle moves one lattice unit at its velocity along one of
the eight links indicated with number 1–8, or else 0 indicates the particle at rest with zero speed.
The velocity vector of particles is defined by
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The local equilibrium distribution function is expressed as
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From the distribution function, the water depth h and flow velocity ui can be calculated from

h=∑
�

f�, ui = 1

h

∑
�
e�i f� (16)

2.3. Boundary conditions

Boundary conditions play a crucial role since they select solutions that are compatible with external
constraints [20]. The lattice Boltzmann equation can be solved with proper boundary conditions,
such as the bounce-back scheme of no-slip boundary conditions for highly rough boundaries
(see Figure 2(b)) [21]. At the inflow and outflow boundaries, it has been tested that the periodic
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(a) (b)

Figure 2. (a) D2Q9 and (b) bounce-back scheme.

boundary condition shows an excellent stability [22]; hence it is used in this paper. If the velocities
and the depth are known, the unknown distribution function f� at the boundaries can be calculated
with the method given by Zou and He [23]. Assume v=0, for inflow boundary:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1= f5+ 2hu

3e
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6e
+ f6+ f7− f3

2
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6e
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2

(17)

for outflow boundary: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f5= f1− 2hu

3e

f4=−hu

6e
+ f8+ f7− f3

2

f6=−hu

6e
+ f2+ f3− f7

2

(18)

3. NUMERICAL SIMULATION AND VALIDATION

3.1. Model dimensions and parameters

For reasons of symmetry, only half of the channel is investigated (see Figure 3), saving 50% of
computation time. The dimensions of the channel are consistent with the SERC-FCF Series 02 [11].
The geometrical parameters are B/b=4.2, b/Hc=5, side slope s=1, b=0.75m, Hc=0.15m,
bed slope S0=0.001, and the bed friction factors (Cb) are 0.0163, 0.0204 and 0.0245 for zones
1–3, respectively. H is controlled between 0.2 and 0.3m giving Dr (=(H−Hc)/H) between 0.15
and 0.4 (Hc is the depth of the main channel). The computational domain is 10m×3.15m with
a 200×64 grid. �=0.5001 and time step �t=0.001s. A periodic boundary condition is applied
at the inflow and outflow boundaries, whereas a no-slip boundary condition is used at the rough
bank side.
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Figure 3. Compound channel sketch.

Figure 4. Comparison between the LBM (—) and the FCF experimental
(∗) lateral distributions of u and �b.

3.2. Velocity and boundary shear stress

The results for longitudinal velocity and boundary shear stress shown in Figure 4 indicate that the
LBM predictions give overall agreement with the FCF data, although the LBM results underestimate
both u and �b (Equation (8)) slightly in the main channel when Dr is small. However, the situation
is better as the value of Dr increases. It should be noted that the deviations near the bank are
relatively higher than the other areas, which is probably caused by the application of the no-slip
boundary condition, assuming that the boundaries are highly rough. This can be improved by
using the semi-slip boundary condition [21]. The curves of boundary shear stress �b show sudden
increase adjacent to the transitional area where the bed friction is discontinuous, but the jumps
of �b become less noticeable with the ascending of Dr.
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Figure 5. Comparison between the LBM lateral distributions of u and �b with
different side slopes: s=1 (—) and s=0.577 (×).

Additionally, as most natural channels have side slopes smaller than 1 (45◦), another side slope
s=0.577 (30◦) is investigated with the other conditions remaining the same as for the previous
test. As shown in Figure 5, the change of the side slope does not influence the lateral distributions
of longitudinal velocity and boundary shear stress significantly for any value of Dr involved in this
study. However, the shear effect is slightly weakened giving rise to the smoother curves, although
the shear layer is a bit larger than that for s=1.

3.3. The Reynolds stress

The velocity histories, representing the instantaneous velocities with perturbation around the mean
values at two typical points across the channel, are plotted in Figure 6. The coordinates of these
two points are (2.00m, 0.25m) in the main channel and (2.00m, 0.85m) in the shear layer. In
fact, such mean velocities are constants for dynamic steady flows. The turbulence modeling based
on a subgrid-scale stress model gives detailed fluctuation of velocities, which represents one of
the advantages over time-averaged turbulence models such as the k−� model.

The Reynolds stress can be obtained by the definition �Rxy =−�u′v′, where u′ and v′ are turbulent
perturbations of velocity and calculated by

u′ =u− ū, v′ =v− v̄ (19)

where ū and v̄ are time-averaged velocities. Because the turbulence is significant in the shear layer
due to the lateral exchange of momentum, the distribution of the Reynolds stresses in and near the
shear layer is of interest and is plotted in Figure 7. The figure shows good agreement between the
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Figure 6. Typical velocity history in turbulent compound channel flow (Dr=0.242).

Figure 7. The Reynolds stress �Rxy near shear layer.
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LBM results and the FCF data with the maximum difference taking place at the interface between
the main channel and floodplain (y=0.9m). This may be caused by the complex three-dimensional
flow structure due to the strong effect of the secondary flow in this region. For Dr values above
0.197, the peak of �Rxy decreases by about 60%, indicating that the turbulence is less distinct.

3.4. Apparent stress

The depth-mean apparent shear stress acting on a vertical interface �Axy may be calculated by the
coupling of the Newtonian shear stress model and the subgrid-scale stress model:

�Axy =�
�hui
�x j

−�e

[
�(hui )

�x j
+ �(hu j )

�xi

]
(20)

The eddy viscosity �e may be calculated by Equation (4). It should be noted that the velocity used
here is still instantaneous and space-filtered. To verify the model, the LBM result is compared
with the experimental data for Dr=0.197, shown in Figure 8. The agreement between the two
curves indicates the applicability of the lattice Boltzmann model.

Subsequently, the model is applied to another two cases of Dr, 0.242 and 0.396, respectively. As
can be seen from Figure 9, generally the smaller Dr gives the larger absolute value of �Axy across the
channel, especially adjacent to the interface of the main channel and the floodplain. However, the
peak value occurs within the floodplain immediately adjacent to the interface. Also, with decrease
in Dr, the peak of the curves moves to the right gradually showing that the influence of momentum
exchange transfers further into the floodplain. In addition, �Axy varies approximately linearly in
both the main channel and the floodplain, which is consistent with the first-order assumption of
the analytical solution proposed by Shiono and Knight [24].

Figure 8. Comparison between the LBM and the FCF experimental apparent
shear stresses �Axy for Dr=0.197.
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4. SUMMARY AND DISCUSSION

This paper describes the LBM for nonlinear shallow water equations coupled with the large
eddy simulation model (LABSWETM) and its application to compound channel flows. Numerical
simulations have been carried out for different relative depths (Dr), and the lateral distributions of
longitudinal velocity, boundary shear stress, Reynolds stress and apparent shear stress have been
analyzed. The normalized root-mean-square error and the maximum error have been calculated and
shown in Table I, indicating that good agreement has been achieved. In terms of run time, generally,
a two-dimensional model uses much shorter time and less storage than a three-dimensional model.
Although there is no literature stating the run time for the three-dimensional compound channel
modeling, from previous research [25, 26], the lattice Boltzmann model used even shorter time
than a conventional model for the same dimensional task; on the other hand, since the distribution

Figure 9. The LBM apparent shear stress �Axy comparison for different Dr.

Table I. Normalized Rms-error and max-error.

Dr Rms-error∗ Max-error∗

u 0.197 0.048 0.271
0.242 0.037 0.255
0.396 0.024 0.323

�b 0.197 0.033 0.178
0.242 0.029 0.125
0.396 0.028 0.211

�Rxy 0.197 0.155 0.379
0.242 0.235 0.421

�Axy 0.197 0.092 0.440

Rms: root-mean-square.∗Normalized by the maximum experimental data.
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function, f , is the only variable in the LBM, the requirement of storage is lower than a traditional
model, which also gives rise to an increase in the running speed.

5. CONCLUSIONS

The numerical simulations confirm the ability of the lattice Boltzmann model to simulate accurately
compound channel flow. In practice, secondary flow generated by the channel geometry makes the
flow structure three-dimensional in the vicinity of the shear layers. The present numerical results
(obtained by reducing the problem to a two-dimensional depth-averaged case) demonstrate that
the model achieves acceptable accuracy while requiring considerably less computing power than
conventional three-dimensional simulations.
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